1. 旅游攻略 > 知识 >

数学难题

世界七大数学难题之首是谁?
世界七大数学难题之首是谁?
提示:

世界七大数学难题之首是谁?

世界七大数学难题之首是NP完全问题。 例:在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。宴会的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现宴会的主人是正确的。 然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。 生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13717421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。 人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。 不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克于1971年陈述的。

世界七大数学难题之首是什么?
提示:

世界七大数学难题之首是什么?

这七个“世界难题”是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯存在性和质量缺口、纳卫尔-斯托可方程、BSD猜想。这七个问题都被悬赏一百万美元。 数学大师大卫·希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向,其对数学发展的影响和推动是巨大的,无法估量的。 20世纪是数学大发展的一个世纪。数学的许多重大难题得到完满解决, 如费马大定理的证明,有限单群分类工作的完成等, 从而使数学的基本理论得到空前发展。 2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”,克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得一百万美元的奖励。 克雷数学研究所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向, 而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。

三大数学难题分别是什么?
提示:

三大数学难题分别是什么?

1、最诡异最恐怖的数学题 有3个人去投宿,一晚30元.三个人每人掏了10元凑够30元交给了老板.后来老板说今天优惠只要25元就够了,拿出5元命令服务生退还给他们,服务生偷偷藏起了2元,然后,把剩下的3元钱分给了那三个人,每人分到1元。 这样,一开始每人掏了10元,现在又退回1元,也就是10-1=9,每人只花了9元钱,3个人每人9元,3X9=27元+服务生藏起的2元=29元,还有一元钱去了哪里? 2、数学界的争议:芝诺悖论 这也算是物理学界的一个争议,阿基里斯与乌龟芝诺赛跑,乌龟在阿里斯基前面先跑100米,然后阿基里斯才开始跑。 当阿基里斯跑了100米的时候,乌龟多跑出去一米,阿基里斯跑了一米的时候,乌龟又多跑了一厘米,以此推论下来,阿基里斯永远都跑不过乌龟。虽然现实中是很快就跑过去的,但是在数学里,似乎永远都是追不上的。 3、诡异数学题:蚂蚁与皮筋 一只蚂蚁在理性弹性绳的一端,向另一端以每秒1cm的速度爬行。弹性绳同时以每秒1m的速度均匀地拉长,蚂蚁能否爬到终点? 看起来似乎不行,但是在数学里这又是行的,假设弹性绳的速度是每秒0.9cm,那么直觉上蚂蚁就能爬到终点。而弹性绳均匀拉长意味着其上总有一点的速度是每秒0.9cm,也就是说蚂蚁可以爬到这个点。接下来把整个弹性绳分段就好了。

数学三大难题是什么?
提示:

数学三大难题是什么?

世界近代三大数学难题之一四色猜想
四色猜想的提出来自英国.1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试.兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展.
1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教.哈密尔顿接到摩尔根的信后,对四色问题进行论证.但直到1865年哈密尔顿逝世为止,问题也没有能够解决.
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色 猜想成了世界数学界关注的问题.世界上许多一流的数学家都纷纷参加了四色猜想的大会战 .1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了.
11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的.不久,泰勒的证明也被人们否定了.后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获.于是,人们开始认识到,这个貌似容易的题目, 实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路.
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行.1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色.1950年,有人从22国推进到35国.1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国.看来这种推进仍然十分缓慢.电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明.四色猜想的计算机证明,轰动了世界.它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点.不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法.
--------
世界近代三大数学难题之一 费马最后定理
被公认执世界报纸牛耳地位地位的 *** 於1993年6月24日在其一版头题刊登了一则有
关数学难题得以解决的消息,那则消息的标题是「在陈年数学困局中,终於有人呼叫『
我找到了』」.时报一版的开始文章中还附了一张留着长发、穿着中古世纪欧洲学袍的
男人照片.这个古意盎然的男人,就是法国的数学家费马(Pierre de Fermat)(费马
小传请参考附录).费马是十七世纪最卓越的数学家之一,他在数学许多领域中都有极
大的贡献,因为他的本行是专业的律师,为了表彰他的数学造诣,世人冠以「业余王子
」之美称,在三百六十多年前的某一天,费马正在阅读一本古希腊数学家戴奥芬多斯的
数学书时,突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内
容是有关一个方程式 x2 + y2 =z2的正整数解的问题,当n=2时就是我们所熟知的毕氏定
理(中国古代又称勾股弦定理):x2 + y2 =z2,此处z表一直角形之斜边而x、y为其之
两股,也就是一个直角三角形之斜边的平方等於它的两股的平方和,这个方程式当然有
整数解(其实有很多),例如:x=3、y=4、z=5;x=6、y=8、z=10;x=5、y=12、z=13…
等等.
费马声称当n>2时,就找不到满足xn +yn = zn的整数解,例如:方程式x3 +y3=z3就无法
找到整数解.
当时费马并没有说明原因,他只是留下这个叙述并且也说他已经发现这个定理的证明妙
法,只是书页的空白处不够无法写下.始作俑者的费马也因此留下了千古的难题,三百
多年来无数的数学家尝试要去解决这个难题却都徒劳无功.这个号称世纪难题的费马最
后定理也就成了数学界的心头大患,极欲解之而后快.
十九世纪时法国的法兰西斯数学院曾经在一八一五年和一八六0年两度悬赏金质奖章和
三百法郎给任何解决此一难题的人,可惜都没有人能够领到奖赏.德国的数学家佛尔夫
斯克尔(P?Wolfskehl)在1908年提供十万马克,给能够证明费马最后定理是正确的人,
有效期间为100年.其间由於经济大萧条的原因,此笔奖额已贬值至七千五百马克,虽然
如此仍然吸引不少的「数学痴」.
二十世纪电脑发展以后,许多数学家用电脑计算可以证明这个定理当n为很大时是成立的
,1983年电脑专家斯洛文斯基借助电脑运行5782秒证明当n为286243-1时费马定理是正确
的(注286243-1为一天文数字,大约为25960位数).
虽然如此,数学家还没有找到一个普遍性的证明.不过这个三百多年的数学悬案终於解
决了,这个数学难题是由英国的数学家威利斯(Andrew Wiles)所解决.其实威利斯是
利用二十世纪过去三十年来抽象数学发展的结果加以证明.
五0年代日本数学家谷山丰首先提出一个有关椭圆曲现的猜想,后来由另一位数学家志
村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联.在八0年代德
国数学家佛列将谷山丰的猜想与费马定理扯在一起,而威利斯所做的正是根据这个关联
论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的.这个结论
由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报
告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注.不过威利斯的
证明马上被检验出有少许的瑕疵,於是威利斯与他的学生又花了十四个月的时间再加以
修正.1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束.1997年6
月,威利斯在德国哥庭根大学领取了佛尔夫斯克尔奖.当年的十万法克约为两百万美金
,不过威利斯领到时,只值五万美金左右,但威利斯已经名列青史,永垂不朽了.
要证明费马最后定理是正确的
(即xn + yn = zn 对n33 均无正整数解)
只需证 x4+ y4 = z4 和xp+ yp = zp (P为奇质数),都没有整数解.
----------------
世界近代三大数学难题之一 哥德巴赫猜想
哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士.1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和.如6=3+3,12=5+7等等. 1742年6月7日,哥德巴赫写信将这个问题告诉给意大利大数学家欧拉,并请他帮助作出证明.欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明.叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意.他们对一个个偶数开始进行验算,一直算到3.3亿,都表明猜想是正确的.但是对于更大的数目,猜想也应是对的,然而不能作出证明.欧拉一直到死也没有对此作出证明.从此,这道著名的数学难题引起了世界上成千上万数学家的注意.200年过去了,没有人证明它.哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”.到了20世纪20年代,才有人开始向它靠近.1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99).这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”. 1924年,数学家拉德马哈尔证明了(7+7);1932年,数学家爱斯尔曼证明了(6+6);1938年,数学家布赫斯塔勃证明了(5十5),1940年,他又证明了(4+4);1956年,数学家维诺格拉多夫证明了(3+3);1958年,我国数学家王元证明了(2十3).随后,我国年轻的数学家陈景润也投入到对哥德巴赫猜想的研究之中,经过10年的刻苦钻研,终于在前人研究的基础上取得重大的突破,率先证明了(l十2).至此,哥德巴赫猜想只剩下最后一步(1+1)了.陈景润的论文于1973年发表在中国科学院的《科学通报》第17期上,这一成果受到国际数学界的重视,从而使中国的数论研究跃居世界领先地位,陈景润的有关理论被称为“陈氏定理”.1996年3月下旬,当陈景润即将摘下数学王冠上的这颗明珠,“在距离哥德巴赫猜想(1+1)的光辉顶峰只有飓尺之遥时,他却体力不支倒下去了……”在他身后,将会有更多的人去攀登这座高峰.

联系我们

在线咨询:点击这里给我发消息

工作日:9:30-18:30,节假日休息